
 298

OBJECT-ORIENTED COMPOSITION TOOL

Phyu Thwe, San San Tint
University of Computer Studies, Mandalay

phyuthwe19@gmail.com

ABSTRACT

Object-oriented language comes with pre-defined
composition mechanisms, such as inheritance,
object composition or delegation each
characterized by a certain set of composition
properties. The concepts of inheritance and
association are used in object-oriented
composition. This system allows the users to define
the links that connect objects and express and
combine individual composition properties. This
system can create class diagram in which field,
method, constructor and destructor can be added.
Class diagrams can be associated and inherited
with each other and generate codes. Abstract class
can be created and also associated and inherited
with other classes. The system generates code and
displays composition techniques and properties.

1. INTRODUCTION

Object-oriented programming is a better kind of
structured programming perhaps, but structured
programming methods would not help very much
in developing object-oriented applications. Object-
oriented programming is not just structured
programming. Applications are able to build more
quickly because objects are reusable - there can be
a huge gap between software written in an object-
oriented language and a truly reusable framework
of object classes. Frameworks are hard to develop,
and not always easy to use.
 There are good reasons for adopting object-
oriented technology: so far it appears to offer the
best means to cope with complexity and variation
in large systems. When families of similar systems
must be built, or single system must undergo
frequent changes in requirements, object-oriented

languages, tools and methods offer the means to
view such systems as flexible composition of
software components. It may be still requiring a
great deal of skill to build flexible systems that can
meet many different needs, but at least object-
oriented technology simplifies the task. Object-
oriented software composition adopts the
viewpoint that object-oriented technology is
essentially about composing flexible software
applications from software components. Although
object-oriented languages, tools and methods have
come a long way since the birth of object-oriented
programming, the technology is not yet mature [1].

In this paper, object-oriented composition tool
is implemented by using classes and objects. The
rest of the paper describes as follows: section 2
presents the related works. Section 3 includes
proposed system. Section 4 includes specifying
object implementations. Inheritance and
association are presented in section 5. Section 6
fulfills with the design and implementation of the
system. The conclusion of this system combines at
the last section 7.

2. RELATED WORKS

Compound references, a new abstraction for object
references that allows us to provide explicit
linguistic means for expressing and combining
individual composition properties on-demand [2].
The model is statically typed and allows the
programmer to express a seamless spectrum of
composition semantics in the interval between
object composition and inheritance. The resulting
programs are better understandable, due to
explicitly expressed design decisions, and less
sensitive to requirement changes. They discuss the
set of composition properties of overriding,
redirection, acquisition, subtyping and
polymorphic.
 An approach to typed inheritance
relationships allows a type-safe exchange of

 299

classes in class libraries [3]. In which maintenance
of class libraries becomes difficult or even
impossible because changes in a class library can
cause changes in the inheriting classed in an
application program. Modeling inheritance with
explicit and parametrical bindings introduces a
type interface for inheritance which allows type-
safe changes in class libraries. Furthermore the
approach opens new possibilities for composition
and makes programming easier.

3. PROPOSED SYSTEM

In object-oriented composition tool, the user can
draw class diagrams in which field, method,
constructor and destructor can be added. And then,
the user can connect class diagrams with each
other. The system generates code automatically and
display composition techniques and properties.

There are many composition techniques. But
the system can use two composition techniques,
inheritance and association. Inheritance is a method
for composition between objects. The association is
a way of describing that a class knows about and
holds a reference to another class. There are
different composition properties, such as
overriding, redirection, acquisition and
polymorphism. Overriding a method means
replacing the superclass’s implementation of a
method with one of subclass’s implementation.
Redirection always refers to the current value of
the reference within an object. This system can
display overriding and redirection.

The difference between this system and the
other CASE tools is that the system takes class
diagram as input and generates source code and
displays composition techniques and properties.
Many CASE tools are available now. For example,
Reverse engineering to specification tools takes
source code as input and generates graphical
structured analysis and design models, where-used
lists, and other design information. Code
restructuring and analysis tools analyze program
syntax, generate a control flow graph, and
automatically generate a structured program [4].

The advantages of the system are to give the
ability to create a new class that is an extension or
specialization of an extension class and to modify
the implementation of the system easier using class

inheritance. The user can save time for writing
source code by using this system.

4. SPECIFYING OBJECT
IMPLEMENTATIONS

An object's implementation is defined by its class.
The class specifies the object's internal data and
representation and defines the operations that
object can perform. A class is depicted as a
rectangle with the class name. Operations appear in
normal type below the class name. Any data that
the class defines comes after the operations. Lines
separate the class name from the operations and the
operations from the data [5].

Figure 1. Example of a class diagram

Return types and instance variable types are
optional. Objects are created by instantiating a
class. The object is an instance of the class. The
process of instantiating a class allocates storage for
the object's internal data (made up of instance
variables) and associates the operations with these
data. Many similar instances of an object can be
created by instantiating a class.

Figure 2. Subclass relationship

New classes can be defined in terms of existing
classes using class inheritance. When a subclass
inherits from a parent class, it includes the
definitions of all the data and operations that the
parent class defines. Objects that are instances of
the subclass will contain all data defined by the
subclass and its parent classes, and they will be
able to perform all operations defined by this

 300

subclass and its parents. The subclass relationship
is indicated with a vertical line and a triangle [5].

Subclasses can refine and redefine behaviors
of their parent classes. More specifically, a class
may override an operation defined by its parent
class. Overriding gives subclasses a chance to
handle requests instead of their parent classes.
Class inheritance defines classes simply by
extending other classes, making it easy to define
families of objects having related functionality.

5. COMPOSITION TECHNIQUES OF THE
SYSTEM

5.1 Inheritance

A characteristic feature of object-oriented
programming is inheritance. Inheritance is a
method for composition between classes rather
than between objects [3]. The extendibility as well
as the reusability of software components is
enhanced if the concept of inheritance is
incorporated. Inheritance is the means by which
objects of a class can access member variables and
functions contained in a previously defined class,
without having to restate those definitions. This
system can give the ability to create a new class
that is an extension or specialization of an
extension class.

5.2 Association

Similar objects are grouped together and described
by a single class; related links are described by a
single construct, known as an association [6]. A
link between two objects models some sort of
connection between the linked objects. Normally,
the idea expressed by a link can be described as a
more general relationship between the classes
involved. An association therefore involves a
number of classes and models a relationship
between the classes. Associations are represented
in UML as lines joining the related classes.

6. SYSTEM DESIGN

The use case diagram is used for object oriented
composition tool to draw class and generate code

and its properties. There are six use cases. The user
can do the process of

- Draw class diagram
- Add methods
- Connect class
- Generate code
- Display composition techniques
- Display composition properties.

Figure 3. Use case diagram

Figure 4. System flow diagram

 301

6.1. Composition Scenario: The Account
Example

The system can be used for many projects such as
account, booking system, library system, shopping,
university, etc. to generate code. Consider an
application in the banking domain with persons,
companies, accounts, and standing orders. The
relation between persons/companies and accounts
is usually one to many. However, in this example
each account wants to have a dedicated role for its
owner.

In this example, a person has only one main
account and a company has an account. Different
kinds of accounts exist (Savings Account, Current
Account), and accounts are subject to frequent
changes at runtime. A particular account may be
shared. A class Standing Order Processing (SOP)
is used for the registration deregistration and
execution of standing orders [2].

Figure 5. Class diagram for account example

A class diagram for this problem is shown in
Figure 5. Based on the information on a pay order,
the Order Processing Clerk gets the account objects
from the involved Person/Company, creates a
Standing Order and registers it with a SOP. This
design is simple and easy to understand.

6.2. Output Code for Account

public class Account
 {

public static int accountNo;
public static int amount;
public static void balance ()

 {
 }

public static void deposit ()
 {
 }

public static void withdraw ()
 {
 }
}
etc.

6.3. Overriding for Account

Overriding a method means replacing the
superclass’s implementation of a method with one
of subclass’s implementation. The signature must
be identical. The overriding methods have their
own access specifiers. A subclass can change the
access of a super class’s methods, but only to
provide more access. A method can be overridden
only if it is accessible. If the method is not
accessible then it is not inherited, and if it is not
inherited, it can’t be overridden. Overriding is one
of the composition properties.

In Figure 5, to get the saving account’s balance,
the user requests the GetPersonAccount () method
in the OrderProcessingClerk class and invokes the
GetPersonAccount () in person class and the
balance () methods in SanvingsAccount by
overriding the method in Account class.

6.4. Redirection for Account

Redirection is one of the composition properties.
The user first requests the getPersonAccount ()
method in the OrderProcessingClerk class. And
then invokes the getPersonAccount () method in
Person class and executes the methods in Account
class. The user requests the createSOP () method
in the OrderProcessingClerk class and then invokes
the register () method in SOP class and the
getAccount () method in Standing Order class to

 302

create the standing order for the selected Account.
There are changes in Account class. So the
getPersonAccount () method always refer to the
current value of the account reference without a
Person object.

6.5. Example of Inheritance relationship

Consider the example shown in Figure 6. There are
three types of employees: HourlyEmployees,
SalariedEmployees, and Consultants. The features
that are shared by all employees - empName,
empNumber, address, dateHired, and printLabel -
are stored in the Employee superclass, whereas the
features to a particular employee type are stored in
the corresponding subclass (e.g, hourlyRate and
computeWages of HourlyEmployee).

Figure 6. Employee superclass with three

subclasses

An inheritance is shown as a solid line from the
subclass to the superclass, with a hollow arrowhead
at the end of, and pointing toward, the superclass.
A subclass inherits all the features from its
superclass. For example, in addition to its own
special features - hourlyRate and computeWages -
the HourlyEmployee subclass inherits empName,
empNumber, address, dateHired, and printLabel
from Employee. An instance of HourlyEmployee
will store values for the attributes of Employee and
HourlyEmployee and, when requested, will apply
the printLabel and computeWages operations [7].

This system generates codes for Figure 6.
public class Employee

 {
public static string empName;
public static string empNumber;
public static string address;
public static string dateHired;
public static void printLabel ()

 {
 }
}
public class HourlyEmployee: Employee
 {
 Employee myEmployee=new Employee();

public static int hourlyRate;
public static void computeWages ()

 {
 }
}
public class SalariedEmployee: Employee
 {
 Employee myEmployee=new Employee();

public static int annualSalary;
public static string stockOption;

public static void contributePension ()

 {
 }
}
public class Consultant: Employee
 {
 Employee myEmployee=new Employee();

public static int contractNumber;
public static int billingRate;
public static void computeFees ()

 {
 }
}

6.6. Example of Association relationship

Figure 7. Example of association relationship

This system generates codes for Figure 7.

 303

public class Student
 {

 public Course course
{

 get
 {
 }

set
 {
 }

}
public static string name;
public static string dateOfBirth;
public static string year;
public static string address;
public static int phone;
public static void register_for ()

 {
 }
}

public class Course
 {

public static string code;
public static string title;
public static string hour;
public static void enrollment ()

 {
 }
}

7. CONCLUSION

In this paper, the traditional object-oriented
composition mechanisms are shown. A
characteristic feature of object-oriented
programming is inheritance. Inheritance is often
regarded as the feature that distinguishes object-
oriented programming from other modern
programming paradigms and many of the alleged
benefits of object-oriented programming, such as
improved conceptual modeling and reusability. By
means of inheritance, object-oriented programming

enables the extension of components without
losing compatibility.
 The composition mechanism is similar to
functional composition. This system can create
class diagram in which field, method, property,
constructor, destructor can be added. Class
diagrams can be connected with each other by
association and inheritance, and then generate
codes.

This system is only to generate codes but is not
able to run. This system cannot examine the syntax
error, so the user must input data correctly. There
are many relationships, but this system uses
association and inheritance. This system cannot
support message passing.

There are some areas of future work. The
composition techniques can be added to this system
to be complete. This system can be enhanced that
codes are added to complete the data and message
passing between classes to run the application.

REFERENCES

[1] O. Nierstrasz and D. Tsichritzis, Object-oriented
Software Composition, ISBN 0-13-220674-9, Prentice
Hall Object Oriented Series, 1995

[2] K. Ostermann and M. Mezini, “Object-oriented
Composition Untangled,” Siemens AG, Corporate
Technology SE 2, D81730, Munich, Germany

[3] F. J. Hauck, “Inheritance Modeled with Explicit
Bindings: An Approach to Typed Inheritance,”
University of Erlangen-Nurnberg, IMMD 4, Germany

[4] R. S. Pressman, Software Engineering, Fifth
Edition , McGraw Hill

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Produced by KevinZhang

[6] M. Priestley, Practical Object-Oriented Design
with UML, ISBN 007-123923-5, Second Edition,
McGraw Hill, International Edition 2004.

[7] J. S. Valacich, J. F. George and J. A. Hoffer,
Essentials of Systems Analysis and Design, ISBN 0-13-
201756-3, Third Edition, Prentice Hall

